能量转换技术的研究的目的是要形成高速粒子脉冲。美空军的研究机构称,传统的可控硅开关和火花放电开关的研究已经完成,下一步要开展磁性开关研究,这种开关基于饱和的电磁感应原理,具有很高的重复率。
机甲世纪中的远战型机体很好的诠释了粒子武器远距离、高杀伤的优秀特性。与现今的粒子武器不同的是,在机甲世纪的背景时代里,由于原子物理技术的飞跃式发展,粒子武器的质量和体积已经缩小到机甲可以直接装配的程度了。虽然外观缩小了,但是粒子源、粒子加速器、导向磁线圈的基本构造还是保留的。
游戏中,高耗能问题一直是困扰游戏中粒子武器发展的一大羁绊,但随着针对碟型弃舰研究项目的展开,比核能更强大的正反物质湮灭能量逐步为人类所运用。粒子武器的发展瓶颈也终于被突破了。
而从小行星带袭来的小行星,从庞多拉之意“意识场能”内核的“天毁计划”开始启动至今,已经耗时达近半年时间了,如果庞多拉之意“意识场能”内核的“天毁计划”的多米诺骨牌效应和蝴蝶效应开始起到作用,则逐步就会形成向蓝色星球轰击而来的小行星。
小行星带是太阳系内介于火星和木星轨道之间的小行星密集区域,由已经被编号的120437颗小行星统计得到,985的小行星都在此处被发现。
由于小行星带是小行星最密集的区域,估计为数多达50万颗,这个区域因此被称为主带。距离太阳约217364天文单位的空间区域内,聚集了大约50万颗以上的小行星,形成了小行星带。这么多小行星能够被凝聚在小行星带中,除了太阳的引力作用以外,木星的引力起着更大的作用。
小行星带由原始太阳星云中的一群星子比行星微小的行星前身形成。但是,因为木星的重力影响,阻碍了这些星子形成行星,造成许多星子相互碰撞,并形成许多残骸和碎片。
小行星带内最大的三颗小行星分别是智神星、婚神星和灶神星,平均直径都超过400公里在主带中仅有一颗矮行星谷神星,直径约为950公里其余的小行星都较小,有些甚至只有尘埃大小。
小行星带的物质非常稀薄,已经有好几艘太空船安全通过而未曾发生意外。在主带内的小行星依照它们的光谱和主要形式分成三类:碳质、硅酸盐和金属。
另外,小行星之间的碰撞可能形成拥有相似轨道特征和成色的小行星族,这些碰撞也是产生黄道光的尘土的主要来源。
1766年德国天文学家提丢斯s偶然发现一个数列:n410,将n03612代入,可相当准确地给出各颗大行星与太阳的实际距离。
这件事起初未引起人们的注意,后来柏林天文台的台长波德得知后将它发表,乃为天文界所知。
在17年发现天王星之后,进一步证实公式有效,波德于是提出在火星和木星轨道之间也许还有一颗行星。
1801年,西西里和皮亚齐在例行的天文观测中偶然发277处有个小天体,即把它命名为谷神星rs。
1802年,天文学家奥伯斯br在同一区域内又发现另一小行星,随后命名为智神星s。
威廉赫歇尔认为这些天体是一颗行星被毁坏后的残余物。到了1807年,在相同的区域内又增加了第三颗婚神星和第四颗灶神星。
由于这些天体的外观类似行星,威廉赫歇尔就采用希腊文中的语根sr似星的命名为sr,则译为小行星。