沈笑夫接着看到一篇底特律的自动驾驶之路:
几年前,一次由政府发起的自动驾驶汽车比赛中,工程师们注意到一个奇怪的现象。
人类驾驶的汽车在比赛中出现驾驶错误一在停车标志处呼啸而过或者不使用转向灯。
相比之下,自动驾驶的车辆会减速并且操作无误。
他们不仅在路口停车并检查交通状况,而且给有违规驾驶倾向的人为驾驶车辆让路。
安柏瑞德航空航天大学机械与土木工程学院院长,此次活动的小组成员hrleseinhltz说“机器比人类更有预见性。”
这种预见性能够成为运输业改革的基础。
专家们指出,自动驾驶的车辆正变得愈来愈完善。
由于传感器、软件、计算能力不断改善。许多专家相信有朝一日我们的汽车将接管驾驶工作。
“所有的汽车制造商都有这样一个崇高的目标。”飞思卡尔半导体公司管理汽车传感器系统及应用的ttuddin经理说“他们希望我们的车能带我们去杂货店。我们只需要跳进车,然后出发。”
制造自动驾驶汽车的工程师们说,这并不是一个不切实际的期望。
在2005年尸盛大自动驾驶汽车挑战赛中,五辆汽车独立走过整个140英里的路程,包括曲折的山路和急转弯。
在2007年的城市挑战赛中,11辆车完成了整个行程。
此外,谷歌的自动驾驶汽车已悄然在加州公路上行进20万公里以上。
通用汽车公司全球研发副总裁说
“今天,我们已经可以在混乱程度低的环境中实现这一操作。
但如果你试图去孟买,并且在交通非常繁忙的时期,人们不能在自己的车道上驾驶,行人和车辆交汇在一起,那么我们的能力将是有限的。
但如果你在高速公路上行驶我们便能做到,你只须辨识车辆和静止的物体。”
虽然一些观察家可能会问为什么汽车领域会为进行这种巨大的努力而困扰。
而该技术的支持者说他们有充分的理由每年,3000040000的美国人死于交通意外。
更糟糕的是,由于司机们越来越多地使用手机和id的系统,而其使用会对司机造成干扰,未来交通意外死亡率有增高的趋势。
einhltz说“今天,我们期望飞机零事故飞行,有朝一日,我们期望汽车也能零事故行驶。”
学习自我导航
自我导航这种情况并不容易发生。
汽车行业需要向外发展,不能局限于自身可以和学校和供应商合作。
最大的参与者是传感器供应商。
加速度计和陀螺仪的制造商已经和汽车队合作发展诸如航位推算等系统,这个系统能使车辆自定位。
航位推算,是工程师将全球定位卫星的信息融入到汽车的车载惯性传感器数据中。
这使车辆在任何特定时间上都能感应到自身在地图上的位置。
工程师们认为有必要使用两个数据来源,因为系统自我更新速度不够快,因此不能提供准确的定位。
接收信号的频率约为每秒钟五次,而惯性传感器的频率可以更新到在1kz或2kzuddin说
“有一个功能叫做地图匹配。你认识所有的物理实体。那么你可以使用惯性数据来确认您已经从数字化地图上的一个点转移到了另一个点。”
工程师需要抽取加速度计和陀螺仪绘制的数据,为了得到该方程的惯量部分。
他们通常使用所谓的低重力加速度计,它可以感知到在重力降到十分之一过程中,加速度和方向的微妙变化。
这种传感器促使车辆能够在高分辨率的水平下解读距离和位置。
即使是最小的运动如变车道,也可以被低重力加速度计获取。
陀螺仪通过测量车辆的姿态俯仰,滚转,偏航,可以将加速度计错过的数据添加到数据库中。
对工程师来讲,真正的诀窍在于获得庞大的数据,并将这些数据整合,形成一个连续的画面。
为此,他们采用处理器。
例如,传感器可能包含板载处理器,它能过滤数据,并将其发送到“基带”应用处理器上,同时它还可检查数据。
通常情况下,双或四核心处理器,可以处理这样的计算工作。