返回第七百七十三章 马芸:我还有话说!(1 / 2)我成了富一代首页

叶风讲的虽然浅显易懂,但确实精彩万分。

“数据处理,必须经过这几个步骤,完成之后才会有智慧。”

此时台前的叶风,像极了传教老师。

下面的众人,像极了专心听弟子。

“第一个步骤是数据收集。这里有两个方式,第一个方式是拿,专业点的说法叫抓取或者爬取,例如万象搜索就是这么做的,它把网上的所有的信息都下载到它的数据中心,然后你一搜才能搜出来。比如你去搜索的时候,结果会是一个列表,这个列表为什么会在搜索引擎的公司里面呢,就是因为他把这个数据啊都拿下来了,但是你一点链接,点出来这个网站就不在搜索引擎它们公司了。”

“比如说网易有个新闻,你拿万象搜出来,你不点的时候,那一页在万象数据中心,一点出来的网页就是在网易的数据中心了。另外一个方式就是推送,有很多终端可以帮我们收集数据,比如说华风智能手机上面的健康管理应用,可以将你每天跑步的数据、心跳的数据、睡眠的数据都上传到数据中心里面。”

“第二个步骤是数据传输。一般会通过队列方式进行,因为数据量实在是太大了,数据必须经过处理才会有用,可是系统处理不过来,只好排好队,慢慢的处理。”

“第三个步骤是数据存储。现在数据就是金钱,掌握了数据就相当于掌握了钱。要不然别人怎么知道你想买什么呢?就是因为它有你历史的交易的数据,这个信息可不能给别人,十分宝贵,所以需要存储下来。”

“第四个步骤是数据分析。刚才说的存储数据是原始数据,原始数据多是杂乱无章的,有很多垃圾数据在里面,因而需要清洗和过滤,得到一些高质量的数据。对于高质量的数据,就可以进行分析,从而对数据进行分类,或者发现数据之间的相互关系,得到知识。”

“比如90年代盛传的沃尔玛超市啤酒和尿布的故事。”

叶风刚刚举了一个例子,还没说完,大家就会心笑起来。

在坐的各位,都是精英,基本上都听过这个故事。

尤其是红旗大卖场的总裁曹世茹,她知道在美国有一个有趣的现象尿布和啤酒赫然摆在一起出售。但是这个奇怪的举措却使尿布和啤酒的销量双双增加了。这不是一个笑话,而是发生在美国沃尔玛连锁店超市的真实案例,并一直为她津津乐道,常常用来教育下面的员工。

沃尔玛拥有世界上最大的数据仓库系统,为了能够准确了解顾客在其门店的购买习惯,沃尔玛对其顾客的购物行为进行购物篮分析,想知道顾客经常一起购买的商品有哪些。沃尔玛数据仓库里集中了其各门店的详细原始交易数据。在这些原始交易数据的基础上,沃尔玛利用数据挖掘方法对这些数据进行分析和挖掘。

一个意外的发现是“跟尿布一起购买最多的商品竟是啤酒!经过大量实际调查和分析,揭示了一个隐藏在“尿布与啤酒“背后的美国人的一种行为模式在美国,一些年轻的父亲下班后经常要到超市去买婴儿尿布,而他们中有3040的人同时也为自己买一些啤酒。产生这一现象的原因是美国的太太们常叮嘱她们的丈夫下班后为小孩买尿布,而丈夫们在买尿布后又随手带回了他们喜欢的啤酒。

叶风笑道“即然大家都知道,我就不多说了,这就是通过对购买数据进行分析,发现男人一般买尿布的时候,会同时购买啤酒,这样就发现了啤酒和尿布之间的相互关系,获得知识,然后应用到实践中,将啤酒和尿布的柜台弄的很近,就获得了智慧,让啤酒和尿布销量双双大增。”

“第五个步骤就是对于数据检索和挖掘。检索就是搜索,分析后的数据放入搜索引擎,从而人们想寻找信息的时候,一搜就有了。另外就是挖掘,仅仅搜索出来已经不能满足人们的要求了,还需要从信息中挖掘出相互的关系。比如财经搜索,当搜索某个公司股票的时候,该公司的高管是不是也应该被挖掘出来呢?如果仅仅搜索出这个公司的股票发现涨的特别好,于是你就去买了,其实其高管发了一个声明,对股票十分不利,第二天就跌了,这不坑害广大股民么?所以通过各种算法挖掘数据中的关系,形成知识库,十分重要。”

听叶风说得很有逻辑性,众人都点头连连。

这时,又听叶风讲到重点,说起云计算、大数据、人工智能的密切关系。

“当数据量很小的时候,很少的几台机器就能解决。慢慢的当数据量越来越大,最牛的服务器都解决不了问题的时候,就想怎么办呢?要聚合多台机器的力量,大家齐心协力一起把这个事搞定,众人拾柴火焰高。”

“所以说大数据平台,什么叫做大数据,说白了就是一台机器干不完,大家一起干。随着数据量越来越大,很多不大的公司都需要处理相当多的数据,这些小公司没有这么多机器可怎么办呢?”

“说到这里,大家想起云计算了吧。当想要干这些活的时候,需要好多好多的机器一块做,真的是想什么时候要,想要多少就要多少。在以后,一个小公司需要大数据平台的时候,不需要采购一千台机器,只要到晴风云平台上一点,这一千台机器都出来了,并且上面已经部署好了的大数据平台,只要把数据放进去算就可以了。”

“云计算需要大数据,大数据需要云计算,两个人就这样结合了。”

“虽说有了大数据,人的欲望总是这个不能够满足。虽说在大数据平台里面有搜索引擎这个东西,想要什么东西我一搜就出来了。但是也存在这样的情况,我想要的东西不会搜,表达不出来,搜索出来的又不是我想要的。例如音乐软件里面推荐一首歌,这首歌我没听过,当然不知道名字,也没法搜,但是软件推荐给我,我的确喜欢,这就是搜索做不到的事情。当人们使用这种应用的时候,会发现机器知道我想要什么,而不是说当我想要的时候,去机器里面搜索。这个机器真像我的朋友一样懂我,这就有点人工智能的意思了。”

“人们很早就在想这个事情了。最早的时候,人们想象,如果要是有一堵墙,墙后面是个机器,我给它说话,它就给我回应,我如果感觉不出它那边是人还是机器,那它就真的是一个人工智能的东西了。”

叶风继续讲了一些让机器学会推理、教给机器知识等高深的人工智能见解,最后总结道

“人工智能可以做的事情非常多,例如可以鉴别垃圾邮件,鉴别黄色暴力文字和图片等。这也是经历了三个阶段的。第一个阶段依赖于关键词黑白名单和过滤技术,包含哪些词就是黄色或者暴力的文字。随着这个网络语言越来越多,词也不断的变化,不断的更新这个词库就有点顾不过来。第二个阶段时,基于一些新的算法,一些基于概率的算法。第三个阶段就是基于大数据和人工智能,进行更加精准的用户画像和文本理解和图像理解。”

“由于人工智能算法多是依赖于大量的数据的,这些数据往往需要面向某个特定的领域,例如电商,邮箱等等进行长期的积累,如果没有数据,就算有人工智能算法也白搭。而云计算厂商往往是积累了大量数据的,于是就需求在云计算里面装一个人工智能软件即服务,就这样,云计算、大数据、人工智能三兄弟凑齐了。”

“所以将来,只要在一个云计算平台上面,云、大数据、人工智能都能找得到。对一个大数据公司,积累了大量的数据,也会使用一些人工智能的算法提供一些服务。对于一个人工智能公司,也不可能没有大数据平台支撑。所以云计算,大数据,人工智能就这样整合起来,完成了相遇,相识,相知,过上了没羞没臊的美好生活。。

“哈哈哈哈!!!”

听叶风说得基情四射,众人哄然大笑。

说到这里,不知不觉,已经快一个小时了。

就算叶风讲得再精彩。

他也感觉到众人的精神有些疲惫。

特别是的那几名省里来的高官,本身年纪就大,又听着自己一点儿也不懂的专业知识。